Technology or social change, the right path towards sustainability

Understanding transboundary impacts of multi-hazard early warning systems and their cultural context
August 10, 2021
Genetic Profile of Lung Cancer Patients
August 10, 2021

Technology or social change, the right path towards sustainability

technology or social change, the right path towards sustainability

Introduction

The ubiquitous fallout of the over exploitation of natural resources, inadequate land use, deforestation, contamination of sparse water resources, global warming and climate change are all matters of pressing concern. The environment is deteriorating at a rate higher than ever before due to humans and our detrimental activities. The advent of technology has revolutionized every facet of human life. Education, healthcare and medicine, communication, transport and industry have all reaped the benefits. Global population is increasing and a major chunk of it is now migrating to urban areas for varied economic and social factors. This puts tremendous pressure on the land and natural resources. Governments are left with no choice but to espouse ecofriendly solutions such as renewable energy and efficient automobiles and bring about a radical change in policy.

Household and residential energy consumption accounts for a quarter of the energy consumption in the EU. Most of this energy (79%) is used to meet the heating needs (Space 64% and water 15%). The rest is used for lighting and electrical appliances (14%), cooking (5.4%), cooling (0.3%) and other miscellaneous uses[1]. Technological advancements can provide both, a lowered environmental impact and an improved standard of living. There is a necessity not only to cut down on consumption of fossil fuels and move to renewables, but also simultaneously lower the overall energy use. Intelligent/smart home solutions use the integration of meters, sensors and monitoring systems into the house, to work with the various systems and appliances to monitor energy use and optimize performance. Passive and efficient design can further optimize performance. With the reduction in energy consumption, renewable sources such as solar, wind and biomass can be used to meet the now reduced energy need. We must also take into consideration the feasibility of generating energy using renewable sources, based on cost of installation and maintenance, climate and geography of the site. These changes are not just required for new constructions but also existing establishments which need to be retrofitted.

Governments are considering revising their regulations to meet the needs of today and to reduce our long-term impact on the environment. Policy makers have to consider several aspects before creating and enforcing regulations. Several bespoke examples of smart and passive houses have proven their ability to help curb energy use, but there is no consideration for occupant behaviour in most of these cases. Technology that is used primarily for occupant comfort, might not meet the required energy consumption goals. This is what results in the gap between the actual and designed energy performance of buildings. Most of the ecofriendly solutions today encompass technology application and design strategies. There is an oversight of the transition required in attitude, lifestyle and society. A transition to a less resource demanding ways of living especially in urban and affluent parts of society is needed. Home owners, as the end users of the technologies have little to no information on the merits and demerits of their options. There is a need to educate and encourage the masses to bring about a change in society as lifestyle and awareness also contribute to the overall energy use. A pragmatic approach is required to consider all the factors and establish the viability of sustainable homes. Therefore this research will look into the technological and social problems and assess the merits and demerits of each.

literature review

Global energy demand has been rising at an alarming rate and so has the emission of greenhouse gasses (GHGs) and carbon dioxide (CO2). This has put the environment at risk and the phenomenon of global warming and ozone depletion are an imminent threat. Buildings are major contributors to the environmental problems, consuming enormous amounts of energy and accounting for about 35% of the greenhouse gas emissions. Energy efficient buildings with low energy demand and zero emissions, where the required energy is generated on site through renewable sources (wind, solar etc.) thereby cutting down dependence on the grid are the need of the hour. There is a significant increase in land, material and energy use which adversely affects emissions as well and can be owed to change in lifestyle and urbanization (Ürge-vorsatz, 2014). Rise in population, economic growth and change in lifestyle today has made the provision of energy, a primary necessity for all. Recent concerns over rising energy costs and greenhouse gas emissions has coerced the government to address energy and carbon impact of buildings (Koeppel, Urge-Vorsatz and Czako, 2008). Smart and passive buildings are being embraced by many policy makers.

The modern epoch has been termed as the “Anthropocene”, a period during which human interests have been the leading influence on climate change and the environment (Hale, 2018). At the same time, it is believed that technological advancements and innovations will provide a solution for the social and environmental problems (Reid, 2013) and a transition towards more sust